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The equations for large deflections of symmetrically loaded shells of 
revolution contain a natural small parameter e2 (the relative thinness). 
With the aid of asymptotic methods it has been shown that for small E 
there is an equilibrium state of the shell for which the shell behaves 
like a membrane everywhere except for a narrow section near the boundary 
where au edge effect becomes evident. At the same time a practical method 
of calculating this solution is developed. 

1. Formulation of the problem. Consider the system of nonlinear 
differential equations for the large deflection of synxnetrically loaded 
shells of revolution [l] 

Au -~+eu=o (u=$ A( k--Pdp p dp "J-d, )p) (1.1) 

GAu + uv - 0~ + cp (P) = 0, cp (P> = &\ q 0) tdt, ea = 12 (I ““a) rla 

0 

where 10 is the deflection of the middle surface of the shell, Ehv/p is 

the radial force, E is Young’s modulus, cr is Poisson’s ratio, h is the 

thickness of the shell, a2 describes the relative thinness, r1 is the 

radius of the external boundary, q(p) is the intensity of the normal 
loading, and 6 is the angle of slope of the shell in the undeformed 
state; in the case of a spherical shell, for instance, 9 = 8,p, where 8, 

is the curvature. 

‘Ihe boundary conditions, when the shell is partially clamped along 

the boundary, have the form 

1378 
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dv --- 
& 

; v=o (o<&) 
(1.2) 

u=O whenp=l, $<co, +<co whenp=O 

(such a type of boundary clamping has been chosen only for the sake of 

definiteness; it can easily be changed later to some other cornnon case, 

such as hinged support). 

We will investigate the asymptotic behavior of the solutions of the 

problem (1.1,2) as E - 0. In the case of a plate (0 = 0), the relevant 

research has been carried out in the work bl, where it was established 

that the solution of the problem (1.1,2) is close to the solution of the 

"degenerate" solution (the membrane problem) everywhere except in a small 

neighborhood of the boundary p = 1 where there is an edge effect. For 

this it was essential that, both in the degenerate, as well as in the 

non-degenerate problem, there is uniqueness of the solution. 

In the following, an important role is played by the degenerate prob- 

lem (on the equilibrium of a membrane) 

ho-~+ eu, = 0, &Uo - Quo + cp (P) = 0 (1.3) 

da+, 6 --- 
de P 

co=0 when p=l, +<OC when p = 0 (1.4) 

whereby only those solutions of (1.3,4) for which v,>O have physical 

meaning. (The membrane is subjected to tensile forces only.) Such solu- 

tions are called positive. 

Theorems on the existence and uniqueness of 

positive solutions will be proved in Section 2. 

We remark that the solution of the problem 

\ I 

T 

(1.3,4) in the case of a spherical shell and 

I uniform normal loading has been calculated 
0 approximately by Surkin [31. It is natural to 

search for a solution of the problem (1.1,2) 

that is close to positive solutions of the prob- 

lem (1.3.4). We will consider such solutions of 
Fig. 1. problem (1.1,2) for which u >, 0 and denote them 

membrane solutions. Moreover, it will be estab- 

lished that, for sufficiently spa11 E. such a 

solution exists and is unique. Indeed, as E - 0 the membrane solutions 
tend to positive solutions for the membrane. 

At first sight it may seem paradoxical that, for example, in a 

spherical shell subjected to the action of normal external loading (Fig. 

I), only tensile forces are produced. This can be explained by the fact 
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that, since in this case the thin shell turns inside out (Fig. 21, the 
applied loading tends to increase the convexity of the shell. 

For the proof of these facts firstly the 
formal asymptotic expansions of the solution of 
problem (1.1.2) are constructed, which ,are 
analogous to that obtained in the work [zI for 
the case of a plate (Section 3). In the vicinity 
of these expansions it is possible to apply 
Newton’s method as extended to operator equations 

Fig. 2. 

by Kantorovich [a]. Together with the derivation 
of the above-mentioned qualitative results, the 
asymptotic expansions constructed here also give a useful method of cal- 
culat ing membrane solutions. 

\V\‘e note that the case of the shelf is essentially different. from the 
case of the plate since the degenerate, as well as the non-degenerate 
problem has, in general, several solutions. A unique solution can be 
selected by means of the condition that the function v should be positive. 

Below, for practical purposes, we will assume the following condi- 
tions 

2. Membrane equa Cons. M’e will prove that the problem (1.3,4 has 
just one positive solution. From (1.3) it follows that 

The function v,(p) can be determined as the solution of the problem 

-roz 0 whenp=l (2.2) 

Theorem 2.1. Let the conditions (1.5) be satisfied, Then the problem 
(2.2) has no more than one positive solution. 

In fact, if it is assumed that problem (3.2) has the two solutions 
v,(p) >O and V,‘(P) > 0 then, with the notation v. - ua’ = W, we *ill 
have 
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By employing the simple inequality 

1 

41) = (\~dp)‘<~(~)‘dp 
b 0 

(2.4) 

and by taking account of the positive definiteness of v,, and va’, we 
find from (2.3) that 

(2.5) 

Hence it follows that w = v0 - v,,’ s 0. For the existence proof we 
make use of Chaplygin’s method in a form extremely close to that which 
was developed by EIabkin [51 ; we thereby obtain at the same time an 
effective method of constructing the positive solutions. 

Theorem 2.2. problem (2.2) has no less than one positive solution. 

Proof. Firstly, we observe that problem (2.2) is equivalent to the 
operator equation 

uo (P) = L-l (&- - $) (2.6) 

where 

We introduce the function C(p) by the equality 

c (P) = [$$J (2.8) 

where a > 0 is an arbitrary constant which satisfies the inequality 

A direct calculation shows that C(p) satisfies the inequality 

L-1 (+) <L--l ($g) <L-l ($) + c (p) (2.10) 

We will show that the solution of the problem is the limit of the 
sequence of functions {v,) determined by the relations 

v1 =L-1 ( A?.-__ 82 
2PC2 ) 2p ' vn+1 = vn - 6, (n=1,2,...) (2.11) 

where 6, is the solution of the equations 
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L6, -j- ,116, - an = 0, d4l 
p-0 

< 00, - - -$8, /F=l = 
dP I 

0 (2.12) 

a * =Lrn-_&i$ 
n2? 

M = max *’ 
PL.13 I 

(Od,oi1) (2.13) 

nhe quantity M is finite since, because of the condition ‘9: < :nlP2 

and from (2.7,10, ll), it follows that v,(p) >n+p. 

We now verify 

we find 

that o,< 0. In fact, by employing (2.11) and (2.101, 

(2.$4) 

l3y using this fact, we will show that 6, < 0. Multiplying (2.12)) for 

n = 1, by 6, and integrating with respect to p, we find 

(2.15) 

n 

Estimating the left-hand side of (3.15) with the aid of the inequal- 

ity (2.4), applied to 6, we are lead to 

I 

\ a,& dP > 0 (2.16) 

If now it is assumed that 6,(p) is non-negative, it can be shown that, 

in any interval [tl, t2! C LO, 11, El(p) >O for p E [<,, t2: and 

6,(<,) = gl({,) = 0. Rut this leads to a contradiction, since, analo- 

gously to (2.16) for [cl, ~~1, we obtain 

i2 

c y-161 dP > 0 (2 17) 

e, 

Thus, it has been proved that 61(p) is non-positive, i.e. that 

51(p) GO. 

From (2,15), by using (2.1) and the inequality 

we are lead to 
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(8.18) 

We shall now show that a2 GO. We have 

a,=Lvq$y+;=*- 0’ 
2PV? 2p (Vl - b# 

+ Mb (2.19) 

By applying the Lagrange formula, we rewrite (2.19) in the form 

aa = 
[ M - p (VI “’ ri3g 1 *1 (O<rdl) (2.20) 

The fact that a,(p) is non-positive follows from (2.20) by virtue of 
the definition (2.13) of the function # and the inequalities v,-< 0, 

6, > 0. Moreover, (2.20) f urnishes the following estimates 

I ~2 (P) I < M I 6, (P) 1, II a2 lb* Q M II 4 IIL (2.21) 

Fr3m (2.12) we obtain 

(2.22) 

Similarly, it is possible to deduce the estimates 

11 ak 11 L* < M 11 *k-l It, (k = 1,2, . . . ) (2.23) 

Hence we obtain for arbitrary k >l 

We will prove that the series v1 - (6, + 6, + . ..). and hence the 
sequence {v,), converges, as well as the first derivative, uniformly 
[0, l] to some function vO. For this we pass over from (2.1?) to the 
equation 

on 

tik = L-lak - ML-& (2.25) 

Now, from (2.24, 25)) making use of (2.7), we obtain the estimate 

Thus, the convergence has been established. It remains 
that v0 is the solution of (2.6). From (2.13) results the 
relation 

(2.26) 

(k=1,2,...) 

to be shown 

following 
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@ - - $) + L-l (ak) 
2Pvka 

(2.27) 

The last term in (2.27) converges uniformly to zero by virtue of 
(2.24) and the boundedness of L- ’ as an operator acting from L, into the 

space of continuous functions C. Moreover, we note that mp > v& > ul > mlp, 
where m and ml are known constants. ‘lherefore 

and the Equation (2.6) for v,, can be obtained frcm (2.27) by the limit 

process k - Q). 

We observe that it is possible to construct another proof of Theorem 

2.2, by taking into account that problem (2.2) is equivalent to the prob- 

lem of the minimum of the functional 

(the energy of the membrane) on the manifold of positive functions v 

which satisfy the boundary conditions (2.2). At the same time the Ritz 
method for calculating an approximate solution of problem (2.2) can be 

justified. 

3. Construction of the asymptotic representation. We intro- 

duce the notation: Let the vector V E (u, u) be the solution, and PM 

be the left-hand side the the system (1.1). For the solution (1.1,2) we 

will construct an asymptotic representation in the form 

n-t1 n+1 

v = 2 ev, + ZJ e’h.+5L.+z. 
6=0 6=0 6=0 

n n R w 

u'= 2 e6u6 + 2 @6 + 2 e6$6 + % 

6==O 6=4 I=0 

'I'& functions u ( ), u,(p) will be obtained by means of the first 

iterative process !67. 

Indeed, we assume that 

v, s (P, u”) (vn = f: @us, un = 6$ e'u6) (3.2) 
S==O 

and require that 

P [VJ = 0 (En+‘) (3.3) 
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By equating to zero the coefficients of a’, al, . . . , E” in (3.31, we 
obtain for the determination of LJ~, u. the system of equations ( 1.3,4), 

and for the determination of us, us we obtain the system 

AU,-+ x Ukuj + 0~8 = 0, x ukvj - 8Vs + Au,+ = 0 
kfj=s k+j=s 

(s =I, 2,. . .) n+l; u-1=0) (3.4) 

with the boundary conditions 

vs 
[ 1 dvs 
T- <WY -- dc, 

P=O dp P 1 
= B, 

P=l 

where Bs are as yet undetermined constants. The functions us, us do not 

satisfy the boundary conditions (1.2) for p = 1, and, consequently, the 

difference V - Vn will not be small in the vicinity of the points p = 1. 

Tne resulting residuals in the fulfilment of the boundary conditions 

(1.2) when p = 1 can be compensated by functions of the boundary-layer 

type hs(p), g,(p), which can be determined with the aid of the second 
iteration process. Indeed, we will seek the difference V - Vn in the form 

v_vn= ; m, Ph u---p= i EmgIn (3.5) 
m=o ??I-=ll 

Moreover, let 

I’=1-p, vk = vklr’, t.tk = uklr’, e = i elr’ 

l=O I==0 I=0 

corresponding to the development in Taylor’s series at the point r = 0. 
We substitute (3.5) into (1.11, make the substitution p = 1 - it, and 
equate the coefficients of a’, al, . . . , E”. With the calculation (3.31, 
this leads to the following system of linear differential equations with 
constant coefficients: 

d”h. 
-2= 
dt2 

0 (i = 0, 1) (3.6) 

Gh 
s+z 

- = R&s,, i- R2h.s - dtd 2 t’uklgj 
+ Ix 

t'+'b?klgj - 

kfj+l=s k+j+l+l=a 

-i 2 gigj + + 2 migj + 2 t’olgk - 2 t’+‘fl,g,,. 

i+j=s i+j+l=s k+t=s k+l+l=s 

d”g, 
---_ 
dt’ OO~S =RISS-I f R?gS-c + 2 t'vklgj- 11 tl+12:g,gj + 

k+j+l=s 
(s+j) 

k+j+I+l=s 
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where 

1 I 

’ g-2 = 
g-1 

= 0, 1 -- 2’oo-1_-5 ‘1 \ u ‘F? 

b t 
7-G) d;Cfq>O (s=O,l,&...) 
2&3- 

Requiring that g5 makes up for the residue due to us in the fulfil.ment 
of the boundary conoitions u = 0 when p = 1, we obtain the boundary *:on- 
ditions 

Bs llzO = - ES0 (s = &I, f . . ) n) (3.8) 

The second boundary condition for g, and the condition for hs are ob- 
tained from the requirement that the solution has a boundary-layer 
character in the vicinity of p = 1 

?S !txsJ = 0, ks !i_--c = 0 (S = 0, t, ‘ 1 ‘ , n) -_ (3.9) 

1% determine the constants BS by equating to zero the coefficients of 
ES(.s = 0, 1, . . . . R + 1) in the equality 

(3.10) 

In particular, B,, = 0. From (3.6,9), it is clear that h, = h, = 0. 
Indeed, hence follows the correctness of the choice of the boundary con- 
ditions (1.4) for the positive solution in the problem of the equi- 
librium of the membrane (1.3,1). From (3.7) to (3.9) we obtain, by virtue 
of (3.6), when s = 0 

&j&Q 
-@-- r,,go = 0, go/t,0 = - %OI go /tzm = 03 2’00 > 0 (3*11) 

go = - rtoo esp (- Gt, = - ug (1) esp [ - ‘c/m 93 

i.e. g, has the nature of a boundary-layer function of zero order. NO~V 
we determine /x2. From (3.7), (3.9) and (3.11) we obtain 
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Moreover, from the condition 13. RI), equating to zero the coefficient 
of al, we find 

‘Ihe functions @;# can be determined from equations which are of the 
same type as ( 3.11) but nonhomogeneous, 

Ihe infinitely differentiable, non-increasing functions o,(p) and 

p,(p) compensate for the disparities in the satisfaction of the boundary 
conditions when p = 0, which are associated with the functions g,(p) and 

h&p), and are 

Thus the process of constructing an asymptotic representation reduces 
to the following. We find the positive solution va, uO of the problem 

(1.3,4), and from (3.11) we determine g,. Then, from (3.4) we success- 
ively find rtt, us, and from (3.1) to (3.9) we find )Is8 g, (s = I, 2, . . ,I. 

4. Justification of the as~ptotic expansions. Existence of 
the membrane solution. We introduce the notation ‘pk = v - xk# YyK = u - zL. 

LenuRa 4.1. For i&_ and vyb we have the valid estimates 

(the condition fCp, E) = @paktl) means that ]f(p, a)f \<srpaktl). 

We omit the proof, since it is almost a literal repetition of the 
proof in the case of a plate. 

Lemaa 4.2. For sufficiently small ~(0 < a < aI) for all p E [o, l] 
the following inequalities are valid 

Here v1 is defined by (2.11). We have 
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Taking into account that h, = 0, 

O(p), 11,‘(p) = O(p), we have 
as well as the estimates z&p) = 

T,, = 2’0 + 0 (Pa) (4.3j 

Now the inequality (4.2) follows immediately from (4.3)) if use is 

made of the relation uO >vl >np whic!i was mentioned during the proof 

of Theorem 2.2. 

We introduce the Banach space of the vectors V z (u, u): 

1) consiting of the vectors with the finite norm 

2) the closure 

1 

(44 j/v,,Lp \qslp II 2, 
(4.4) 

b 

of the manifold of smooth vector-functions, satisfying 

the conditions (1.2)) by the norm 

WA 
+ 1 

IIQ,“, = \ p [(Au)~ + (AN21& (4.5) 

; 

The problem (1.1,2) will be treated as the functional equation 

P [VI = 0 (4.6) 

where the operator P is defined by the left-hand side of the system (1.1) 
and operates from W into L 

P P’ 

Theorem 4.1. The problem (1.1,3) has one and only one membrane solu- 

tion. The uniqueness is proved in exactly the same way as in the case of 

the plate [7]. F or the proof of existence use is made of a theorem of 

Kantorovich [31 on the convergence of Newton’s method. For the initial 

approximation, Vk* = (qk, yk) is taken. 

In the application to the present problem, the theorem is formulated 

in the following manner. 

Theorem 4.2. Suppose the operator P has been defined inside the 

sphere Q( I\ V - V,* 11-G 3) of the space !VPand that in the closed sphere 

Q,( (1 V - Vk* 11 < r) it h as a continuous second derivative. Suppose also 

that: 

1) there exists a linear operation TO = [Pv,*’ (\‘)I-* 
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Then Fguation ( t.6) has the solution I’*, to which Newton’s process 
converges. In this 

II V” - vih.* &_ q r0 (4.7) 
P 

It is clear that the conc?itions of the theorem are satisfied if 

t?‘e will now prove that (4.8) is satisfied for sufficiently small E 
and for arbitrary k > 3. From (Lt. 1) we deduce 

!iP (V$)F& < rnEk-+l (4.9 

!ye make an estimate of the second factor in (4.8). ‘k’e have 

pv,: (V) = (Av -l)k u + 024, e”du $-%pk2; _t qk”L - flv) (4.40) 

From (4.10) we obtain 

(4.iIj 

From (4.11)) by using (4.2) and (2.41, we deduce 

l 2 
r, 
b 

~Pv,:(V)Vrl~>ez]~V/~~2 P 

Then, it follows that 

II ihli: w II& a .Q II v II, (4.12) 

Applying the inequality (4.121, it is not difficult to prove that the 
operator Pv, . ’ has an inverse and that we have the estimate 

II 1 Pv,: 1-l II < $- (4.13) 

For the estimate of 11 Pv"]~, we consider the bi-linear form 
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Pv” (V‘) (V) = (- .%I u”, 21’2/ + u”v’) (4.14) 

lities of the form of “im- fow we make note of the validity of inequa 
bedding theorems”’ 

1 

max 

OQFQl 

which are easily deduced from (It.51 and the integral. representations of 
u, v in terms of .-lu and AV respectively. Therefore 

Whence there results the estimate 

~PV”~ < n2, (4.17) 

From (4.91, (J.13) and (J.17) we obtain 

1 P fvk* f Ifi._ It l&ji: I-’ 119 II Pv” if Q m&---3 < 3 (4.18) 

if k > 3 and E is sufficiently small (0 < E < ~~1. Hence, the conditions 
of the theorem of Kantorovich are satisfied. Therefore, TZuation C.2.61, 
which is equivalent to the problem (1.1,2), has the solution V* = (u, uf 
for which an estimate of the form (4.7) holds 

1 V” -- vi;* )&., < )‘() 

Calculating the value of r0 with the aid of 
(4.131, we find 

I/ V” - I-&.* !ifl. 
0 

< 171&’ 

Finally, from (3.191, with the aid of (-1.3) 

v = vo + 0 (PC) 

the inequalities (4.9) and 

ik > 31 (4.99) 

and !.t. 151, we obtain 

(4.20) 

Iience it follows that V>V, if E is sufficiently small. This means 
that the constructed solution V* is a membrane one. Theorem 1.1 has been 
proved. 

* Translator’s note: In the Russian literature this expression refers 
to a number of theorems attributed to S.L. Sobolev. See, for instance, 
Smirnov; h’urs I’ysshei Yatematiki, Vol. 5, Section 114. 
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Tbe condition v>O allows the application of the reasoning in the 

work [21 , and the following conclusions are obtained. 

Theorem 4.3. For the membrane solution of problem (1.1,2) the asymp- 

totic representations (3.1) are valid, and, moreover, the remainders are 

bounded by the following estimates: 

max 1 zk (P) I< m2E 

kt $ 
(k=O,l,...) 

O<,<I;.Sl 

max 
06F<l 

max 
O<PQl 

dxk 

G 

< n@-H (k = 0, 1, . . ), (k = 2, 3, . .) 

k- $ k-$ 

(k =I, 2,. . .), max (k = 3,4, . . . ) 
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